25

Chemically Self-Consistent Modeling of the Globular Cluster NGC 2808 and its Effects on the Inferred Helium Abundance of Multiple Stellar Populations

2 EMILY M. BOUDREAUX,¹ BRIAN C. CHABOYER,¹ AMANDA ASH,² RENATA EDAES HOH,¹ AND GREGORY FEIDEN²

¹Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA

²Department of Physics and Astronomy, University of North Georgia, Dahlonega, GA 30533, USA

ABSTRACT

The helium abundances in the multiple populations that are now known to comprise all closely 6 studied Milky Way globular clusters are often inferred by fitting isochohrones generated from stellar evolutionary models to globular cluster photometry. It is therefore important to build stellar models 8 that are chemically self-consistent in terms of their structure, atmosphere, and opacity. In this work 9 we present the first chemically self-consistent stellar models of the Milky Way globular cluster NGC 10 2808 using MARCS model atmospheres, OPLIB high-temperature radiative opacities, and AESOPUS 11 low-temperature radiative opacities. These stellar models were fit to the NGC 2808 photometry using 12 Fidanka, a new software tool that was developed to optimally fit cluster photometry to isochrones 13 and for population synthesis. Fidanka can determine, in a relatively unbiased way, the ideal number of 14 distinct populations that exist within a dataset and then fit isochrones to each population. We achieve 15 this outcome through a combination of Bayesian Gaussian Mixture Modeling and a novel number 16 density estimation algorithm. Using Fidanka and F275W-F814W photometry from the Hubble UV 17 Globular Cluster Survey we find that the helium abundance of the second generation of stars in NGC 18 2808 is higher than the first generation by $15 \pm 3\%$. This is in agreement with previous studies of 19 NGC 2808. This work, along with previous work by Dotter et al. (2015) focused on NGC 20 6752, demonstrates that chemically self-consistent models of globular clusters do not 21 significantly alter inferred helium abundances, and are therefore unlikely to be worth the 22 significant additional time investment. 23

24 *Keywords:* Globular Clusters (656), Stellar evolutionary models (2046)

1. INTRODUCTION

²⁶ Globular clusters (GCs) are among the oldest observ-²⁷ able objects in the universe (Peng et al. 2011). They ²⁸ are characterized by high densities with typical half-²⁹ light radii of ≤ 10 pc (van den Bergh 2010), and typi-³⁰ cal masses ranging from 10^4-10^5 M_{\odot} (Brodie & Strader ³¹ 2006) — though some GCs are significantly larger than ³² these typical values (e.g. ω Cen, Richer et al. 1991). ³³ GCs provide a unique way to probe stellar evolution ³⁴ (Kalirai & Richer 2010), galaxy formation models ³⁵ (Boylan-Kolchin 2018; Kravtsov & Gnedin 2005), and ³⁶ dark matter halo structure (Hudson & Robison 2018).

Corresponding author: Emily M. Boudreaux emily.m.boudreaux.gr@dartmouth.edu, emily@boudreauxmail.com

The traditional view of globular clusters is that they 37 ³⁸ consist of a single stellar population (SSP, in some publi-³⁹ cations this is referred to as a Simple Stellar Population). ⁴⁰ This view was supported by spectroscopically uniform ⁴¹ heavy element abundances (Carretta et al. 2010; Bastian ⁴² & Lardo 2018) across most clusters (M54 and ω Cen are ⁴³ notable exceptions, see Marino et al. (2015) for further ⁴⁴ details), and the lack of evidence for multiple stellar pop-⁴⁵ ulations (MPs) in past color-magnitude diagrams of GCs ⁴⁶ (i.e. Sandage 1953; Alcaino 1975). However, over the 47 last 40 years non-trivial star-to-star light-element abun-⁴⁸ dance variations have been observed (i.e. Smith 1987) 49 and, in the last two decades, it has been definitively ⁵⁰ shown that most, if not all, Milky Way GCs have MPs ⁵¹ (Gratton et al. 2004, 2012; Piotto et al. 2015). The lack ⁵² of photometric evidence for MPs prior to the 2000, can ⁵³ be attributed to the more narrow color bands available,

⁵⁴ until very recently, to ground-based photometric surveys ⁵⁵ (Milone et al. 2017).

The prevalence of multiple populations in GCs is so 56 57 distinct that the proposed definitions for what consti-⁵⁸ tutes a globular cluster now often center on the existence ⁵⁹ of MPs (e.g. Carretta et al. 2010). Whereas people have 60 have often tried to categorize objects as GCs through ⁶¹ relations between half-light radius, density, and surface ⁶² brightness profile, in fact many objects which are gener-⁶³ ally thought of as GCs don't cleanly fit into these cuts 64 (Peebles & Dicke 1968; Brown et al. 1991, 1995; Bekki Chiba 2002). Consequently, Carretta et al. (2010) 65 & ⁶⁶ proposed a definition of GCs based on observed chem-67 ical inhomogeneities in their stellar populations. The 68 modern understanding of GCs then is not simply that ⁶⁹ of a dense cluster of stars that may have chemical inho-70 mogeneities and multiple populations; rather, it is one ⁷¹ where those chemical inhomogeneities and multiple pop-⁷² ulations themselves are the defining elements of a GC.

All Milky Way globular clusters studied in detail show 73 74 populations enriched in He, N, and Na while also be-⁷⁵ ing depleted in O and C (Piotto et al. 2015; Bastian & ⁷⁶ Lardo 2018). Further, studies of Magellenic Cloud massive clusters have shown that these light el-77 78 ement abundance variations exist in clusters as 79 young as ~ 2 Gyr but not in younger clusters 80 (Martocchia et al. 2019) while there is also evi- $_{\rm 81}$ dence of nitrogen variability in the $\sim 1.5~{\rm Gyr}$ old ⁸² cluster NGC 1783 (Cadelano et al. 2022). These ⁸³ light element abundance patterns also are not strongly ⁸⁴ correlated with variations in heavy element abundance, ⁸⁵ resulting in spectroscopically uniform Fe abundances be-⁸⁶ tween populations (though recent work indicates $_{87}$ that there may be [Fe/H] variations within the ⁸⁸ first population, e.g. Legnardi et al. 2022; Lardo ⁸⁹ et al. 2022). Further, high-resolution spectral studies ⁹⁰ reveal anti-correlations between N-C abundances, Na-O ⁹¹ abundances, and potentially Al-Mg (Sneden et al. 1992; 92 Gratton et al. 2012). Typical stellar fusion reactions ⁹³ can deplete core oxygen; however, the observed abun-⁹⁴ dances of Na, Al, and Mg cannot be explained by the 95 CNO cycle (Prantzos et al. 2007). Consequently, glob-⁹⁶ ular cluster populations must be formed by some novel 97 means.

Formation channels for these multiple populations remain a point of debate among astronomers. Most proposed formation channels consist of some older, more massive population of stars polluting the pristine cluster media before a second population forms, now enriched in heavier elements which they themselves could not have generated (for a detailed review see Gratton to et al. 2012). The four primary candidates for these pol¹⁰⁶ luters are asymptotic giant branch stars (AGBs, Ventura
¹⁰⁷ et al. 2001; D'Ercole et al. 2010), fast rotating mas¹⁰⁸ sive stars (FRMSs, Decressin et al. 2007), super mas¹⁰⁹ sive stars (SMSs, Denissenkov & Hartwick 2014), and
¹¹⁰ massive interacting binaries (MIBs, de Mink et al. 2009;
¹¹¹ Bastian & Lardo 2018).

Hot hydrogen burning (i.e. proton capture), material 112 ¹¹³ transport to the surface, and material ejection into the ¹¹⁴ intra-cluster media are features of each of these models ¹¹⁵ and consequently they can all be made to *qualitatively* ¹¹⁶ agree with the observed elemental abundances. How-¹¹⁷ ever, none of the standard models can currently account ¹¹⁸ for all specific abundances (Gratton et al. 2012). AGB ¹¹⁹ and FRMS models are the most promising; however, 120 both models have difficulty reproducing severe O deple-¹²¹ tion (Ventura & D'Antona 2009; Decressin et al. 2007). ¹²² Moreover, AGB and FRMS models require significant 123 mass loss (~ 90%) between cluster formation and the ¹²⁴ current epoch — implying that a significant fraction of 125 halo stars formed in GCs (Renzini 2008; D'Ercole et al. 126 2008; Bastian & Lardo 2015).

In addition to the light-element anti-correlations ob-127 ¹²⁸ served, it is also known that second populations are sig-¹²⁹ nificantly enhanced in helium (Piotto et al. 2007, 2015; 130 Latour et al. 2019). Depending on the cluster, helium 131 mass fractions as high as Y = 0.4 have been inferred (e.g. ¹³² Milone et al. 2015a). However, due to both the relatively 133 high and tight temperature range of partial ionization ¹³⁴ for He and the efficiency of gravitational settling in core ¹³⁵ helium burning stars, the initial He abundance of glob-¹³⁶ ular cluster stars cannot be observed; consequently, the ¹³⁷ evidence for enhanced He in GCs originates from com-¹³⁸ parison of theoretical stellar isochrones to the observed 139 color-magnitude-diagrams of globular clusters. There-140 fore, a careful handling of chemistry is essential when ¹⁴¹ modeling with the aim of discriminating between MPs; ¹⁴² yet only a very limited number of GCs have been stud-¹⁴³ ied with chemically self-consistent (structure and atmo-144 sphere) isochrones (e.g. Dotter et al. 2015, NGC 6752). NGC 2808 is the prototype globular cluster to host 145 ¹⁴⁶ multiple populations. Various studies since 2007 have 147 identified that it may host anywhere from two to five 148 stellar populations. These populations have been iden-¹⁴⁹ tified both spectroscopically (i.e. Carretta et al. 2004; 150 Carretta 2006; Carretta et al. 2010; Gratton et al. 2011; ¹⁵¹ Carretta 2015; Hong et al. 2021) and photometrically 152 (i.e. Piotto et al. 2007, 2015; Milone et al. 2015a, 2017; ¹⁵³ Pasquato & Milone 2019). Note that recent work (Valle 154 et al. 2022) calls into question the statistical significance 155 of the detections of more than two populations in the ¹⁵⁶ spectroscopic data. Here we present the first stel¹⁵⁷ lar structure and evolutionary models built in a chemically self-consistent manner of NGC 2808. 158 We model the photometry of the **primordial pop-**159 ¹⁶⁰ ulation (hereafter P1) and the helium enriched population (hereafter P2). Milone et al. (2015a) 161 162 identifies five populations within NGC 2808, ¹⁶³ given that the aim of this work is not to identify ¹⁶⁴ sub-populations; rather, to measure the effect 165 that chemical self consistant stellar structure and ¹⁶⁶ evolutionary have on the inferred helium abun-¹⁶⁷ dance for the two most extreme cases, we do not ¹⁶⁸ consider more than those two populations. We use archival photometry from the Hubble UV Globular 169 ¹⁷⁰ Cluster Survey (HUGS) (Piotto et al. 2015; Milone et al. 171 2017) in the F275W and F814W passbands to charac-¹⁷² terize multiple populations in NGC 2808 (Milone et al. ¹⁷³ 2015a,b) (This data is available on MAST, Piotto 2018). 174 Additionally, we present a likelihood analysis of the pho-175 tometric data of NGC 2808 to determine the number of 176 populations present in the cluster.

2. CHEMICAL CONSISTENCY

177

There are three primary areas in which the stellar 178 179 models must be made chemically consistent: the at-180 mospheric boundary conditions, the opacities, and in-181 terior abundances. The interior abundances are rel-182 atively easily handled by adjusting parameters within 183 our stellar evolutionary code. However, the other two 184 areas are more difficult to make consistent. Atmo-185 spheric boundary conditions and opacities must both 186 be calculated with a consistent set of chemical abun-¹⁸⁷ dances outside of the stellar evolution code. Nearly all ¹⁸⁸ prior efforts at modeling multiple stellar popula-189 tions in globular clusters have adjusted the abun-¹⁹⁰ dances used in the atmospheric interior models, ¹⁹¹ and in the high temperature opacities, but have ¹⁹² not self-consistently modified the corresponding ¹⁹³ low-temperature opacities and surface bound-¹⁹⁴ ary conditions, as these are found from stellar ¹⁹⁵ atmosphere codes, and not the stellar interior 196 codes which are used to create stellar models and ¹⁹⁷ isochrones. In this work, as in Dotter (2016), ¹⁹⁸ the stellar interior models are chemically self-¹⁹⁹ consistent with the stellar atmosphere models. 200 For evolution, we use the Dartmouth Stellar Evolution ²⁰¹ Program (DSEP) (Dotter et al. 2008), a well-tested 1D 202 stellar evolution code which has a particular focus on $_{203}$ modeling low mass stars ($\leq 2 M_{\odot}$)

204 2.1. Atmospheric Boundary Conditions

²⁰⁵ Certain assumptions, primarily that the radiation ²⁰⁶ field is at equilibrium and radiative transport is dif²⁰⁷ fusive (Salaris & Cassisi 2005), made in stellar struc-²⁰⁸ ture codes, such as DSEP, are valid when the opti-²⁰⁹ cal depth of a star is large. However, in the atmo-²¹⁰ spheres of stars, the number density of particles drops ²¹¹ low enough and the optical depth consequently becomes ²¹² small enough that these assumptions break down, and ²¹³ separate, more physically motivated, plasma- modeling ²¹⁴ code is required. Generally, structure code will use tab-²¹⁵ ulated atmospheric boundary conditions generated by ²¹⁶ these specialized codes, such as ATLAS9 (Kurucz 1993), ²¹⁷ PHOENIX (Husser et al. 2013), MARCS (Gustafsson ²¹⁸ et al. 2008), and MPS-ATLAS (Kostogryz et al. 2023). ²¹⁹ Often, because the boundary conditions are expensive to ²²⁰ compute, they are not updated as interior abundances ²²¹ vary.

One key element when building chemically self-222 223 consistent models of NGC 2808 is the incorporation of ²²⁴ new atmospheric boundary conditions with the same ele-²²⁵ mental abundances as the structure code. We use atmo-²²⁶ spheres generated from the MARCS grid of model atmo-227 spheres (Plez 2008). MARCS provides one-dimensional, 228 hydrostatic, plane-parallel and spherical LTE atmo-²²⁹ spheric models (Gustafsson et al. 2008). Model atmo-²³⁰ spheres are made to match the spectroscopically mea-²³¹ sured elemental abundances of Milone et al. (2015a) 232 populations A&E. Moreover, for each population, at-233 mospheres with various helium mass fractions are gen-²³⁴ erated. These range from Y=0.24 to Y=0.36 in steps of 235 0.03. All atmospheric models are computed to an optical 236 depth of $\tau = 100$ where their temperature and pressure 237 serve as boundary conditions for the structure code. In 238 general, enhancing helium in the atmosphere has only ²³⁹ a small impact on the atmospheric temperature profile, while leading to a drop in the pressure by $\sim 10 - 20\%$.

2.2. Opacities

In addition to the atmospheric boundary conditions, both the high and low temperature opacities used by DSEP must be made chemically consistent. Here we use OPLIB high temperature opacity tables (Colgan et al. 2016) retrieved using the TOPS web-interface. Retrival of high termperature opacities is done ustring pyTOPSScrape, first introduced in Boudreaux & Chaboyer (2023). Low temperature opacity tables are retrieved from the Aesopus 2.0 web-interface (Marigo & Aringer 2009; Marigo et al. 2022). Ideally, these opacities would be the same used in the atmospheric models. However, the opacities used in the MARCS models are not publicly available. As such, we use the opacities provided by the TOPS and Aesopus 2.0 web-interfaces.

3. STELLAR MODELS

3

256

241

=

Table 1. Population Composition

We use the Dartmouth Stellar Evolution Program 257 (DSEP, Dotter et al. 2008) to generate stellar mod-258 els. DSEP is a one-dimensional stellar evolution code 259 ²⁶⁰ that includes a mixing length model of convection, grav-²⁶¹ itational settling, and diffusion. Using the solar com-²⁶² position presented in (Grevesse et al. 2007) (GAS07), ²⁶³ MARCS model atmosphers, OPLIB high temperature ²⁶⁴ opacities, and AESOPUS 2.0 low temperature opaci-²⁶⁵ ties we find a solar calibrated mixing length parameter, ₂₆₆ α_{MLT} , of $\alpha_{MLT} = 1.901$. Abundance measurments ²⁶⁷ are derived from populations A&E in Milone et al. (2015a) (for P1 and P2 respectivley). 268

We use DSEP to evolve stellar models ranging in mass 269 270 from 0.3 to 2.0 solar masses from the fully convective 271 pre-main sequence to the tip of the red giant branch. $_{\rm 272}$ Below 0.7 M_{\odot} we evolve a model every 0.03 M_{\odot} and ²⁷³ above 0.7 M_{\odot} we evolve a model every 0.05 M_{\odot} . We 274 evolve models over a grid of mixing length parameters $\alpha_{MLT} = 1.0$ to $\alpha_{MLT} = 2.0$ in steps of 0.1. For 276 each mixing length, a grid of models and isochrones were calculated, with chemical compositions consistent with 277 ²⁷⁸ Milone et al. (2015a) populations A and E (see Tables and 1) and a range of helium abundances (Y=0.24,279 1 0.27, 0.30, 0.33, 0.36, and 0.39). In total, 144 sets of 280 ²⁸¹ isochrones, each with a unique composition and mixing ²⁸² length were calculated. Each model is evolved in DSEP $_{283}$ with typical numeric tolerences of one part in 10^7 . Each ²⁸⁴ model is allowed a maximum time step of 50 Myr.

For each combination of populations, Y, and α_{MLT} 285 we use the isochrone generation code first presented in 286 Dotter (2016) to generate a grid of isochrones. The 287 isochrone generation code identified equivalent evolu-288 tionary points (EEPs) over a series of masses and inter-289 ²⁹⁰ polates between them. The grid of isochrones generated for this work is availble as a digital supplement to this 291 ²⁹² paper 10.5281/zenodo.10631439. Given the complex-²⁹³ ity of the parameter space when fitting multiple populations, along with the recent warnings in the litera-294 ²⁹⁵ ture regarding overfitting datasets (e.g. Valle et al. ²⁹⁶ 2022), we want to develop a more objective way of fitting isochrones to photometry than if we were to mark 297 median ridge line positions by hand. 298

4. FIDANKA

When fitting isochrones to the clusters with multiple populations we have four main criteria for any method:

299

302	• The method must be robust enough to work along
303	the entire main sequence, turn off, and much of
304	the subgiant and red giant branch.

Element	P1 (A)	P2 (E)	Element	P1 (A)	P2 (E)
Li	-0.08		In	-1.46	
Be	0.25		Sn	-0.22	
В	1.57	_	Sb	-1.25	
\mathbf{C}	6.87	5.91	Te	-0.08	
Ν	6.42	6.69	Ι	-0.71	
Ο	7.87	6.91	Xe	-0.02	
F	3.43	_	Cs	-1.18	_
Ne	7.12	6.7	Ba	1.05	_
Na	5.11	5.7	La	-0.03	
Mg	6.86	6.42	Ce	0.45	
Al	5.21	6.61	Pr	-1.54	
Si	6.65	6.77	Nd	0.29	
Р	4.28	_	Pm	-99.0	
\mathbf{S}	6.31	5.89	Sm	-1.3	—
Cl	-1.13	4.37	Eu	-0.61	
Ar	5.59	5.17	Gd	-1.19	
Κ	3.9	_	Tb	-1.96	
Ca	5.21	_	Dy	-1.16	
\mathbf{Sc}	2.02	_	Но	-1.78	
Ti	3.82	_	Er	-1.34	
V	2.8	_	Tm	-2.16	—
Cr	4.51	_	Yb	-1.42	
Mn	4.3	_	Lu	-2.16	—
Fe	6.37	_	Hf	-1.41	—
Co	3.86	—	Ta	-2.38	
Ni	5.09	—	W	-1.41	
Cu	3.06	—	Re	-2.0	
Zn	2.3	_	Os	-0.86	
Ga	0.78	—	Ir	-0.88	
Ge	1.39	_	Pt	-0.64	
As	0.04	_	Au	-1.34	
\mathbf{Se}	1.08	_	Hg	-1.09	
Br	0.28	_	Tl	-1.36	
\mathbf{Kr}	0.99	_	Pb	-0.51	
Rb	0.26		Bi	-1.61	
Sr	0.61	_	Po	-99.0	
Υ	1.08	_	At	-99.0	
Zr	1.45	_	Rn	-99.0	
Nb	-0.8	—	Fr	-99.0	—
Mo	-0.38	—	Ra	-99.0	—
Tc	-99.0	—	Ac	-99.0	—
Ru	-0.51	—	Th	-2.2	—
$\mathbf{R}\mathbf{h}$	-1.35	—	Pa	-99.0	—
Pd	-0.69	—	U	-2.8	

NOTE—Relative Metal composition used where a(H) = 12. Composition measurments are taken from Milone et al. (2015a) populations A&E (P1 and P2 respectively). Where the relative composition is the the same for both P1 and P2; it is only listed in the P1 column for the sake of visual clarity.

Table 2. Population Abundance Ratios

Population	$[\mathrm{Fe}/\mathrm{H}]$	$[\alpha/{\rm Fe}]$	[C/Fe]	$[\mathrm{N/Fe}]$	[O/Fe]	[r/Fe]	$[\mathrm{s/Fe}]$	C/O	Х	Υ	Z
A(1)	-1.13	0.32	-0.43	-0.28	0.31	-1.13	-1.13	0.10	0.7285	0.2700	0.00154
E(2)	-1.13	-0.11	-1.39	-0.02	-0.66	-1.13	-1.13	0.10	0.7594	0.240	0.00063

NOTE—Abundance ratios for populations P1 and P2 in NGC 2808.

References—Milone et al. (2015a)

- Any method should consider photometric uncer-305 tainty in the fitting process. 306
- The method should be model independent, weight-307 ing any n number of populations equally. 308
- The method should be automated and require 309 minimal intervention from the user. 310

We do not believe that any currently available soft-311 ³¹² ware is a match for our use case. Therefore, we have 313 developed our own software suite, Fidanka. Fidanka ³¹⁴ is a Python package designed to automate much of the ³¹⁵ process of measuring fiducial lines in CMDs, adhering to 316 the four criteria we lay out above. Primary features of 317 Fidanka may be separated into three categories: fidu-318 cial line measurement, stellar population synthesis, and ³¹⁹ isochrone optimization/fitting. Additionally, there are ³²⁰ utility functions that are detailed in the Fidanka docu-321 mentation.

322

4.1. Fiducial Line Measurement

Fidanka takes a iterative approach to measuring fidu-323 324 cial lines, the first step of which is to make a "guess" 325 as to the fiducial line. This initial guess is calculated 326 by splitting the CMD into magnitude bins, with uni-327 form numbers of stars per bin (so that bins cover a 328 small magnitude range over densely populated regions 329 of the CMD, while covering a much larger magnitude ³³⁰ range in sparsely populated regions of the CMD, such as the RGB). A unimodal Gaussian distribution is then 331 ³³² fit to the color distribution of each bin, and the resulting ³³³ mean color is used as the initial fiducial line guess. This ³³⁴ rough fiducial line will approximately trace the area of 335 highest density. The initial guess will be used to verti-336 calize the CMD so that further algorithms can work in ³³⁷ 1D magnitude bins without worrying about weighting ³³⁸ issues caused by varying projections of the evolution-³³⁹ ary sequence onto the magnitude axis. Verticalization ³⁴⁰ is performed by taking the difference between the guess ³⁴¹ fiducial line and the color of each star in the CMD.

If Fidanka were to simply apply the same algorithm 342 ³⁴³ to the verticalized CMD, then the resulting fiducial line ³⁴⁴ would likely be a re-extraction of the initial fiducial ³⁴⁵ line guess. To avoid this outcome, we take a more ³⁴⁶ robust, number-density based approach that considers 347 the distribution of stars in both color and magnitude ³⁴⁸ space simultaneously. As an example, in the case 349 of this work, for each star in the CMD we first use ³⁵⁰ an introselect partitioning algorithm to select the 50 ³⁵¹ nearest stars in F814W vs. F275W-F814W space. It ³⁵² should be noted that unlike methods using chro-353 mosome maps Fidanka only considers two filters ³⁵⁴ and therefore might lose access to information 355 better traced by other filters. To account for the ³⁵⁶ case where the star is at an extreme edge of the CMD, ³⁵⁷ those 50 stars include the star itself (such that we really $_{358}$ select 49 stars + 1). We use qhull¹(Barber et al. 1996) ³⁵⁹ to calculate the convex hull of those 50 points. The ³⁶⁰ number density at each star then is defined as $50/A_{hull}$, $_{361}$ where A_{hull} is the area of the convex hull. Because we ³⁶² use a fixed number of points per star, and a partition-³⁶³ ing algorithm as opposed to a sorting algorithm, this ³⁶⁴ method scales like $\mathcal{O}(n)$, where n is the number of stars ³⁶⁵ in the CMD. This method also intrinsically weights the ³⁶⁶ density of each star equally, as the counting statistics 367 per bin are uniform. We are left with a CMD in which ³⁶⁸ each star has a defined number density (Figure 1).

Fidanka can now exploit this density map to fit a 369 ³⁷⁰ better fiducial line to the data, as the density map is far ³⁷¹ more robust to outliers. There are multiple algorithms ³⁷² that we implement to fit the fiducial line to the color-³⁷³ density profile in each magnitude bin (Figure 2); these 374 are explained in more detail in the Fidanka documen-375 tation. However, of most relevance here is the Bayesian ³⁷⁶ Gaussian Mixture Modeling (BGMM) method. BGMM 377 is a clustering algorithm that, for some fixed number $_{378}$ of n-dimensional Gaussian distributions, K, determines 379 the mean, covariance, and mixing probability (somewhat analogous to amplitude) of each k^{th} distribution, ³⁸¹ such that the local lower bound of the likelihood of each

¹ https://www.qhull.com

Figure 1. Figures in the top row are the raw CMD, while figures in the bottom row are colored by the density map. Density map demo showing density estimate over different parts of the evolutionary sequence. The left panel shows the density map over the entire evolutionary sequence, while the middle panel shows the density map over the main sequence and the right panel shows the density map over the RGB.

Figure 2. CMD where point brightness is determined by local density. Lines show the density-color profile in each magnitude bin. In this figure adaptive binning targeted 1000 stars per bin

³⁸² star belonging strongly to a single distribution is maxi-³⁸³ mized.

Maximization is performed using the Dirichlet pro-³⁸⁵ cess, which is a non-parametric Bayesian method of de-³⁸⁶ termining the number of Gaussian distributions, *K*, that 387 best fit the data (Ferguson 1973; Pedregosa et al. 2011). 388 Use of the Dirichlet process allows for dynamic varia-389 tion in the number of inferred populations from mag-³⁹⁰ nitude bin to magnitude bin. Specifically, populations ³⁹¹ are clearly visually separated from the lower main se-³⁹² quence through the turn off; however, at the turn off ³⁹³ and throughout much of the subgiant branch, the two ³⁹⁴ visible populations overlap due to their similar ages (i.e. ³⁹⁵ Jordán et al. 2002). The Dirichlet process allows for the ³⁹⁶ BGMM method to infer a single population in these re-³⁹⁷ gions, while inferring two populations in regions where ³⁹⁸ they are clearly separated. More generally, the use of ³⁹⁹ the Dirichlet process removes the need for a prior on 400 the exact number of populations to fit. Rather, the user 401 specifies a upper bound on the number of populations 402 within the cluster. An example bin (F814W = 20.6) is ⁴⁰³ shown in Figure 3.

Fidanka 's BGMM method first breaks down the verticalized CMD into magnitude bins with uniform numbers of stars per bin (here we adopt 250). Any stars ror left over are placed into the final bin. For each bin a BGMM model with a maximum of five populations is rog fit to the color density profile. The number of popula-

Figure 3. Example of BGMM fit to a magnitude bin. The grey line shows the underlying color-density profile, while the black dashed line shows the joint distribution of each BGMM component. The solid black lines show the two selected components.

410 tions is then inferred from the weighting parameter (the ⁴¹¹ mixing probability) of each population. If the weight- $_{412}$ ing parameter of any k^{th} components is less than 0.05, then that component is considered to be spurious and emoved. Additionally, if the number of populations in 414 r he bin above and the bin below are the same, then the 415 ⁴¹⁶ number of populations in the current bin is forced to be the same as the number of populations in the bin above. 417 Finally, the initial guess fiducial line is added back to 418 the BGMM inferred line. Figure 4 shows the resulting 419 fiducial line(s) in each magnitude bin for both a verti-420 calized CMD and a non-verticalized CMD. In contrast 421 to other work in the literature where evidence for up to 422 five distinct populations has been found, we only find 423 evidence for two stellar populations. 424

This method of fiducial line extraction effectively discriminated between multiple populations along the main sequence and RGB of a cluster, while simultaneously allowing for the presence of a single population along the MSTO and subgiant branch.

We can adapt this density map-based BGMM method 431 to consider photometric uncertainties by adopting a sim-432 ple Monte Carlo approach. Instead of measuring the 433 fiducial line(s) a single time, Fidanka can measure the 434 fiducial line(s) many times, resampling the data with 435 replacements each time. For each resampling, Fidanka 436 adds a random offset to each filter based on the photo-437 metric uncertainties of each star. From these *n* measure-438 ments the mean fiducial line for each sequence can be 439 identified along with upper and lower-bound confidence 440 intervals in each magnitude bin.

441

While not extensively used in this paper Fidanka can, in addition to measuring fiducial lines, perform stellar population synthesis. Fidanka 's population synthesis module can generate synthetic stellar populations from as et of MIST-formatted isochrones. This is of primary importance for binary population modeling. The module is also used to generate synthetic CMDs for the purpose of testing the fiducial line extraction algorithms against priors.

Fidanka uses MIST-formatted isochrones (Dotter 452 2016) as input along with distance modulus, B-V color 453 excess, binary mass fraction, and bolometric corrections. 454 An arbitrarily large number of isochrones may be used 455 to define an arbitrary number of populations. Synthetic 456 stars are samples from each isochrone based on a defin-457 able probability; For example, it is believed that ~ 90% 458 of stars in globular clusters are younger population (e.g. 459 Suntzeff & Kraft 1996; Carretta 2013). Based on the 460 metallicity, μ , and E(B-V) of each isochrone, bolometric 461 corrections are taken from bolometric correction tables. 462 Where bolometric correction tables do not include ex-463 act metallicities or extinctions a linear interpolation is 464 performed between the two bounding values.

4.3. Isochrone Optimization

The optimization routines in Fidanka will find the 467 best fit distance modulus, B-V color excess, and binary 468 number fraction for a given set of isochrones. If a sin-469 gle isochrone is provided then the optimization is done 470 by minimizing the χ^2 of the perpendicular distances 471 between an isochrone and a fiducial line. If multiple 472 isochrones are provided then those isochrones are first 473 used to run a stellar population synthesis and gener-

Figure 4. Verticalized CMD (where the color of each data point is subtracted from the color of the fiducial line at that magnitude) where point brightness is determined by density (top). CMD where point brightness is determined by density, calculated fiducial lines are shown (bottom). The data used is from the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters.

⁴⁷⁴ ate a synthetic CMD. The optimization is then done by ⁴⁷⁵ minimizing the χ^2 of both the perpendicular distances ⁴⁷⁶ between and widths of the observed fiducial line and the ⁴⁷⁷ fiducial line of the synthetic CMD.

478 4.4. Fidanka Testing

In order to validate Fidanka we have run a series of
injection recovery tests using Fidanka 's population synthesis routines to build various synthetic populations
and Fidanka 's fiducial measurement routines to recover
these populations. Each population was generated us-

Figure 5. Synthetic population generated by Fidanka at 10000pc with E(B-V) = 0, and an age of 12 Gyr along with the best fitting isochrone. The best fit paremeters are derived to be $\mu = 15.13$, E(B-V)=0.001, and an age of 12.33 Gyr.

⁴⁸⁴ ing the initial mass function given in (Milone et al. 2012) ⁴⁸⁵ for the redmost population ($\alpha = -1.2$). Further, every ⁴⁸⁶ population was given a binary population fraction of ⁴⁸⁷ 10%, distance uniformly sampled between 5000pc and ⁴⁸⁸ 15000pc, and a B-V color excess uniformly sampled be-⁴⁸⁹ tween 0 and 0.1. Fidanka makes use of ACS arti-⁴⁹⁰ ficial star tests (Anderson et al. 2008) to model ⁴⁹¹ the noise and completness of a synthetic popu-⁴⁹² lation in passbands covered by those tests. Full ⁴⁹³ details on how Fidanka uses artificial star tests ⁴⁹⁴ may be found on its documentation page² Finally, ⁴⁹⁵ each synthetic population was generated using a fixed ⁴⁹⁶ age uniformly sampled between 7 Gyr and 14 Gyr. An ⁴⁹⁷ example synthetic population, along with its associated ⁴⁹⁸ best fit isochrone, are shown in Figure 5.

For each trial we use Fidanka to measure the fiducial line and then optimize that fiducial line against the originating isochrone to esimate distance modulus, age, and color B-V excess. Figure 6 is built from 1000 **Monte-Carlo** trials and shows the mean and width of the percent error distributions for μ , A_v , and age. In general Fidanka is able to recover distance modulii effectively with age and E(B-V) recovery falling in line with other literature that does not cosider the CMD outside of the main sequence, main sequence turn off, subgiant, and red giant branches. Specifically, it should be noted that Fidanka is not set up to model the horizontal branch.

5. ISOCHRONE FITTING

⁵¹² We fit pairs of isochrones to the HUGS data for NGC ⁵¹³ 2808 using Fidanka , as described in §4. As was men-

511

² https://tboudreaux.github.io/fidanka/

Figure 6. Percent error distribution for each of the three deriver parameters. Note that these values will be sensitive to the magnitude uncertainties of the photometry. Here we made use of the ACS artificial star tests to estimate the uncertainties.

514 tioned in §4.1, the method used by Fidanka only ⁵¹⁵ consideres two filters — in the case of this work ⁵¹⁶ F275W and F814W — and therefore might be unable to distinguish between populations sepa-517 ⁵¹⁸ rated only in the higher-dimensional space of a chromosome map. For further discussion of why ⁵²⁰ we adopt this method, despite it limits, we re-⁵²¹ fer the reader to §5.1. Two isochrones, one for P1 ⁵²² and one for P2 are fit simultaneously. These isochrones 523 are constrained to have distance modulus, μ , and color $_{524}$ excess, E(B-V) which agree to within 0.5% and an ages which agree to within 1%. Moreover, we constrain the 525 526 mixing length, α_{ML} , for any two isochrones in a set 527 to be within 0.5 of one and other. For each isochrone 528 set we optimize μ_{P1} , μ_{P2} , $E(B-V)_{P1}$, $E(B-V)_{P2}$, ⁵²⁹ Age_{P1}, and Age_{P2} in order to reduce the χ^2 distance 530 $(\chi^2 = \sum \sqrt{\Delta \text{color}^2 + \Delta \text{mag}^2})$ between the fiducial lines ⁵³¹ and the isochrones. Because we fit fiducial lines directly, 532 we do not need to consider the binary population frac-533 tion, f_{bin} , as a free parameter.

The best fit isochrones are shown in Figure 7 and optimized parameters for these are presented in Table 1. The initial guess for the age of these populations was locked to 12 Gyr and the initial extinction was locked to 0.5 mag. The initial guess for the distance modulus was determined at run time using a dynamic time warping algorithm to best align the morphologies of the fiducial line with ⁵⁴² the target isochrone. This algorithm is explained ⁵⁴³ in more detail in the Fidanka documentation un-544 der the function called guess_mu. We find helium 545 mass fractions that are consistent with those identified ⁵⁴⁶ in past literature (e.g. Milone et al. 2015a). Note that ⁵⁴⁷ our helium mass fraction grid has a spacing of 0.03 be-548 tween grid points and we are therefore unable to resolve 549 between certain proposed helium mass fractions for the ⁵⁵⁰ younger sequence (for example between 0.37 and 0.39). ⁵⁵¹ We also note that the best fit mixing length pa-⁵⁵² rameters which we derive for P1 and P2 do not ⁵⁵³ agree within their uncertainties. This is not sur-⁵⁵⁴ prising, as the much higher mean molecular mass 555 of P2 — when compared to P1, due to population ⁵⁵⁶ P2's larger helium mass fraction — will result in 557 a steeper adiabatic temperature gradient.

Past literature (e.g. Milone et al. 2015a, 2018) has found helium mass fraction variation from the redmost to bluemost populations of ~ 0.12. Here we find a helium mass fraction variation of 0.15 that, given the spacing of the helium grid we use *is consistent with these past results*. The helium mass fractions we derive for P1 and P2 are consistent with those of populations A and E in Milone et al. (2015a); however, populations B+C and D in that study F814W colorband. The inferred helium mass fractions for P1 and P2 are not consistent with those reported for populations B+C and D.

571 5.1. The Number of Populations in NGC 2808

In order to estimate the number of populations that ⁵⁷² In order to estimate the number of populations that ⁵⁷³ ideally fit the NGC 2808 F275W-F814W photometry ⁵⁷⁴ without overfitting the data we make use of silhouette ⁵⁷⁵ analysis (Rousseeuw 1987; Shahapure & Nicholas 2020, ⁵⁷⁶ and in a similar manner to how Valle et al. (2022) per-⁵⁷⁷ form their analysis of spectroscopic data). We find the ⁵⁷⁸ average silhouette score for the hypothesizes that there ⁵⁷⁹ are two, three, four, or five population in each magni-⁵⁸⁰ tude bin. We preform this analysis over all magnitude ⁵⁸¹ using routines built into the standard Python module ⁵⁸² sklearn. Figure 8 (top) shows the silhouette analy-⁵⁸³ most ideally. This result is in line with what our BGMM ⁵⁸⁵ model predicts for the majority of the CMD.

⁵⁸⁶ While we make use of a purely CMD-based ap-⁵⁸⁷ proach in this work, other literature has made ⁵⁸⁸ use of chromosome maps. These consist of ⁵⁸⁹ implicitly verticalized pseudo colors. In the ⁵⁹⁰ chromosome map for NGC 2808 there may be ⁵⁹¹ evidence for more than two populations; fur-⁵⁹² ther, the chromosome maps used include in-

Figure 7. Best fit isochrone results for NGC 2808. The best fit P1 and P2 models are shown as black lines. The following 50 best fit models are presented as grey lines. The dashed black line is fit to P1, while the solid black line is fit to P2.

Population	Age	Distance Modulus	Extinction	Υ	α_{ML}	χ^2_{ν}
	[Gyr]		[mag]			
P1	$12.996\substack{+0.87\\-0.64}$	15.021	0.54	0.24	2.050	0.021
P2	$13.061\substack{+0.86 \\ -0.69}$	15.007	0.537	0.39	1.600	0.033

Table 1. Best fit parameters derived from fitting isochrones to the fiducual lines derived from the NCG 2808 photometry. The one sigma uncertainty reported on population age were determined from the 16th and 84th percentiles of the distribution of best fit isochrones ages.

⁵⁹³ formation from additional filters (F336W and ⁵⁹⁴ F438W) which we do not use in our CMD ap-⁵⁹⁵ proach. We preform the same analysis on the ⁵⁹⁶ F336W-F438W CMD using Fidanka as we do ⁵⁹⁷ on the F275W-F814W CMD. While the cluster-⁵⁹⁸ ing algorithm does find a more strongly distin-⁵⁹⁹ guished potential third population using these ⁶⁰⁰ filters (Figure 8 bottom), the two population ⁶⁰¹ hypothesis remains strongly preferred. More-⁶⁰² over, the process of transforming magnitude ⁶⁰³ measurements into chromosome space results ⁶⁰⁴ in dramatically increased uncertainties for each ⁶⁰⁵ star. We find a mean fractional uncertainty ⁶⁰⁶ for chromosome parameters — $\Delta_{F275W,F814W}$ and ⁶⁰⁷ $\Delta_{CF275W,F336W,F438W}$ — of ≈ 1 (Figure 9) when ⁶⁰⁸ starting with magnitude measurements having a ⁶⁰⁹ mean best-case (i.e. where the uncertainty is ⁶¹⁰ assumed to only be due to Poisson statistics) ⁶¹¹ fractional uncertainty of ≈ 0.0005 . Fractional un-⁶¹² certainties for chromosome parameters were cal-⁶¹³ culated via standard propagation of uncertainty. ⁶¹⁴ Because of how Fidanka operates, i.e. resampling ⁶¹⁵ a probability distribution for each star in order ⁶¹⁶ to identify clusters, we are unable to make sta-⁶¹⁷ tistically meaningful statements from the chro-⁶¹⁸ mosome map

Figure 8. Silhouette analysis for NGC 2808 F275W-F814W (top) and F336W-F438W (bottom) photometry. The Silhouette scores are an average of score for each magnitude bin. Scores have been normalized to indicate the most well-distinguished (+1) to least well-distinguished (-1) hypothesizes.

6. CONCLUSION

Here we have performed the first chemically self-620 consistent modeling of the Milky Way Globular Cluster 621 622 NGC 2808. We find that, updated atmospheric bound-623 ary conditions and opacity tables do not have a signifi-624 cant effect on the inferred helium abundances of multiple 625 populations. Specifically, we find that P1 has a helium 626 mass fraction of 0.24, while P2 has a helium mass fraction of 0.39. Additionally, we find that the ages of these 627 628 two populations agree within uncertainties. We only find evidence for two distinct stellar populations, which 629 630 is in agreement with recent work studying the number of populations in NGC 2808 spectroscopic data. 631

⁶³² We introduce a new software suite for globular cluster ⁶³³ science, Fidanka, which has been released under a per⁶³⁴ missive open source license. Fidanka aims to provide a ⁶³⁵ statistically robust set of tools for estimating the param-⁶³⁶ eters of multiple populations within globular clusters.

Figure 9. Fractional error distribution of $\Delta_{F275W,F814W}$ (top) and $\Delta_{CF275W,F336W,F438W}$. The vertical line near 0 in each figure indicates the mean fractional error of the magnitude measurements used to find the chromosome parameters.

⁶³⁷ This work has made use of the NASA astrophysical data ⁶³⁸ system (ADS). We would like to thank Elisabeth New-⁶³⁹ ton and Aaron Dotter for their support and for useful ⁶⁴⁰ discussion related to the topic of this paper. We would ⁶⁴¹ like to thank the reviewers of this work for their careful ⁶⁴² reading and critique which has significantly improved ⁶⁴³ this article. Additionally, we would like to thank Kara ⁶⁴⁴ Fagerstrom, Aylin Garcia Soto, and Keighley Rock-⁶⁴⁵ cliffe for their useful discussion related to in this work. ⁶⁴⁶ We acknowledge the support of a NASA grant (No. ⁶⁴⁷ 80NSSC18K0634).

REFERENCES

648 Alcaino, G. 1975, A&AS, 21, 15

⁶⁴⁹ Anderson, J., Sarajedini, A., Bedin, L. R., et al. 2008, AJ,
⁶⁵⁰ 135, 2055, doi: 10.1088/0004-6256/135/6/2055

- 651 Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. 1996, ACM
- Transactions on Mathematical Software (TOMS), 22, 469
- 653 Bastian, N., & Lardo, C. 2015, MNRAS, 453, 357,
- 654 doi: 10.1093/mnras/stv1661
- 655 Bastian, N., & Lardo, C. 2018, Annual Review of
- Astronomy and Astrophysics, 56, 83
- ⁶⁵⁷ Bekki, K., & Chiba, M. 2002, The Astrophysical Journal,
 ⁶⁵⁸ 566, 245, doi: 10.1086/337984
- ⁶⁵⁹ Boudreaux, E. M., & Chaboyer, B. C. 2023, ApJ, 944, 129,
 ⁶⁶⁰ doi: 10.3847/1538-4357/acb685
- 661 Boylan-Kolchin, M. 2018, MNRAS, 1423,
- 662 doi: 10.1093/mnras/sty1490
- 663 Brodie, J. P., & Strader, J. 2006, Annu. Rev. Astron.
- 664 Astrophys., 44, 193
- ⁶⁶⁵ Brown, J. H., Burkert, A., & Truran, J. W. 1991, ApJ, 376,
 ⁶⁶⁶ 115, doi: 10.1086/170260
- 667 —. 1995, ApJ, 440, 666, doi: 10.1086/175304
- 668 Cadelano, M., Dalessandro, E., Salaris, M., et al. 2022,
- ⁶⁶⁹ ApJL, 924, L2, doi: 10.3847/2041-8213/ac424a
- $_{670}$ Carretta, E. 2006, AJ, 131, 1766, doi: 10.1086/499565
- 671 —. 2013, A&A, 557, A128,
- 672 doi: 10.1051/0004-6361/201322103
- 673 —. 2015, ApJ, 810, 148, doi: 10.1088/0004-637X/810/2/148
- ⁶⁷⁴ Carretta, E., Bragaglia, A., & Cacciari, C. 2004, ApJL,
- 675 610, L25, doi: 10.1086/423034
- 676 Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010,
- 677 Astronomy & Astrophysics, 516, A55
- 678 Colgan, J., Kilcrease, D. P., Magee, N. H., et al. 2016, in
- APS Meeting Abstracts, Vol. 2016, APS Division of
 Atomic, Molecular and Optical Physics Meeting
- Atomic, Molecular and Optical Physics Meeting
 Abstracts, D1.008
- 682 de Mink, S. E., Pols, O. R., Langer, N., & Izzard, R. G.
- 683 2009, A&A, 507, L1, doi: 10.1051/0004-6361/200913205
- 684 Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., &
- Ekström, S. 2007, A&A, 464, 1029,
- doi: 10.1051/0004-6361:20066013
- ⁶⁸⁷ Denissenkov, P. A., & Hartwick, F. D. A. 2014, MNRAS,
 ⁶⁸⁸ 437, L21, doi: 10.1093/mnrasl/slt133
- 689 D'Ercole, A., D'Antona, F., Ventura, P., Vesperini, E., &
- ⁶⁹⁰ McMillan, S. L. W. 2010, MNRAS, 407, 854,
- 691 doi: 10.1111/j.1365-2966.2010.16996.x
- ⁶⁹² D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S.
- ⁶⁹³ L. W., & Recchi, S. 2008, MNRAS, 391, 825,
- 694 doi: 10.1111/j.1365-2966.2008.13915.x
- ⁶⁹⁵ Dotter, A. 2016, ApJS, 222, 8,
- 696 doi: 10.3847/0067-0049/222/1/8
- ⁶⁹⁷ Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, The
- 698 Astrophysical Journal Supplement Series, 178, 89
- ⁶⁹⁹ Dotter, A., Ferguson, J. W., Conroy, C., et al. 2015,
- 700 MNRAS, 446, 1641, doi: 10.1093/mnras/stu2170

- 701 Ferguson, T. S. 1973, The annals of statistics, 209
- ⁷⁰² Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42,
- 703 385, doi: 10.1146/annurev.astro.42.053102.133945
- 704 Gratton, R. G., Carretta, E., & Bragaglia, A. 2012,
- Astronomy and Astrophysics Reviews, 20, 50,
 doi: 10.1007/s00159-012-0050-3
- 707 Gratton, R. G., Lucatello, S., Carretta, E., et al. 2011,
- ⁷⁰⁸ A&A, 534, A123, doi: 10.1051/0004-6361/201117690
- ⁷⁰⁹ Grevesse, N., Asplund, M., & Sauval, A. J. 2007, SSRv,
 ⁷¹⁰ 130, 105, doi: 10.1007/s11214-007-9173-7
- 711 Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008,
- 712 A&A, 486, 951, doi: 10.1051/0004-6361:200809724
- ⁷¹³ Hong, S., Lim, D., Chung, C., et al. 2021, AJ, 162, 130,
 ⁷¹⁴ doi: 10.3847/1538-3881/ac0ce6
- ⁷¹⁵ Hudson, M. J., & Robison, B. 2018, Monthly Notices of the
 ⁷¹⁶ Royal Astronomical Society, 477, 3869,
- 717 doi: 10.1093/mnras/sty844
- ⁷¹⁸ Husser, T. O., Wende-von Berg, S., Dreizler, S., et al. 2013,
- 719 A&A, 553, A6, doi: 10.1051/0004-6361/201219058
- 720 Jordán, A., Côté, P., West, M. J., & Marzke, R. O. 2002,
- ⁷²¹ ApJL, 576, L113, doi: 10.1086/343759
- 722 Kalirai, J. S., & Richer, H. B. 2010, Philosophical
- Transactions of the Royal Society of London Series A,
- ⁷²⁴ 368, 755, doi: 10.1098/rsta.2009.0257
- 725 Kostogryz, N., Shapiro, A. I., Witzke, V., et al. 2023,
- Research Notes of the AAS, 7, 39,
- 727 doi: 10.3847/2515-5172/acc180
- ⁷²⁸ Kravtsov, A. V., & Gnedin, O. Y. 2005, The Astrophysical
 ⁷²⁹ Journal, 623, 650
- 730 Kurucz, R.-L. 1993, Kurucz CD-Rom, 13
- 731 Lardo, C., Salaris, M., Cassisi, S., & Bastian, N. 2022,
- 732 A&A, 662, A117, doi: 10.1051/0004-6361/202243843
- $_{733}$ Latour, M., Husser, T. O., Giesers, B., et al. 2019, A&A,
- 631, A14, doi: 10.1051/0004-6361/201936242
 ⁷³⁵ Legnardi, M. V., Milone, A. P., Armillotta, L., et al. 2022,
- MNRAS, 513, 735, doi: 10.1093/mnras/stac734
- Marigo, P., & Aringer, B. 2009, A&A, 508, 1539,
 doi: 10.1051/0004-6361/200912598
- Marigo, P., Aringer, B., Girardi, L., & Bressan, A. 2022,
 ApJ, 940, 129, doi: 10.3847/1538-4357/ac9b40
- 741 Marino, A. F., Milone, A. P., Karakas, A. I., et al. 2015,
- Monthly Notices of the Royal Astronomical Society, 450,
 815, doi: 10.1093/mnras/stv420
- 744 Martocchia, S., Dalessandro, E., Lardo, C., et al. 2019,
- Monthly Notices of the Royal Astronomical Society, 487,
- 746 5324, doi: 10.1093/mnras/stz1596
- 747 Milone, A. P., Piotto, G., Bedin, L. R., et al. 2012, ApJ,
- 748 744, 58, doi: 10.1088/0004-637X/744/1/58
- 749 Milone, A. P., Marino, A. F., Piotto, G., et al. 2015a, ApJ,
- ⁷⁵⁰ 808, 51, doi: 10.1088/0004-637X/808/1/51

- ⁷⁵¹ —. 2015b, MNRAS, 447, 927, doi: 10.1093/mnras/stu2446
- 752 Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS,
- ⁷⁵³ 464, 3636, doi: 10.1093/mnras/stw2531
- 754 Milone, A. P., Marino, A. F., Renzini, A., et al. 2018,
- ⁷⁵⁵ MNRAS, 481, 5098, doi: 10.1093/mnras/sty2573
- 756 Pasquato, M., & Milone, A. 2019, arXiv e-prints,
- r57 arXiv:1906.04983, doi: 10.48550/arXiv.1906.04983
- 758 Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011,
- ⁷⁵⁹ Journal of Machine Learning Research, 12, 2825
- ⁷⁶⁰ Peebles, P. J. E., & Dicke, R. H. 1968, ApJ, 154, 891,
- 761 doi: 10.1086/149811
- 762 Peng, E. W., Ferguson, H. C., Goudfrooij, P., et al. 2011,
- ⁷⁶³ The Astrophysical Journal, 730, 23
- 764 Piotto, G. 2018, HST UV Globular Cluster Survey
- ⁷⁶⁵ ("HUGS"), STScI/MAST, doi: 10.17909/T9810F
- 766 Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, The
- ⁷⁶⁷ Astrophysical Journal Letters, 661, L53,
- 768 doi: 10.1086/518503
- 769 Piotto, G., Milone, A. P., Bedin, L. R., et al. 2015, AJ, 149,
- 770 91, doi: 10.1088/0004-6256/149/3/91
- 771 Plez, B. 2008, Physica Scripta Volume T, 133, 014003,
- 772 doi: 10.1088/0031-8949/2008/T133/014003
- 773 Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470,
- 179, doi: 10.1051/0004-6361:20077205

- 775 Renzini, A. 2008, Monthly Notices of the Royal
- Astronomical Society, 391, 354,
- 777 doi: 10.1111/j.1365-2966.2008.13892.x
- 778 Richer, H. B., Fahlman, G. G., Buonanno, R., et al. 1991,
 - ApJ, 381, 147, doi: 10.1086/170637
- Rousseeuw, P. J. 1987, Journal of Computational and
 Applied Mathematics, 20, 53,
- 782 doi: https://doi.org/10.1016/0377-0427(87)90125-7
- 783 Salaris, M., & Cassisi, S. 2005, Evolution of stars and
- 784 stellar populations (John Wiley & Sons)
- 785 Sandage, A. R. 1953, AJ, 58, 61, doi: 10.1086/106822
- 786 Shahapure, K. R., & Nicholas, C. 2020, in 2020 IEEE 7th
- 787 International Conference on Data Science and Advanced
- 788 Analytics (DSAA), 747–748,
- 789 doi: 10.1109/DSAA49011.2020.00096
- 790 Smith, G. H. 1987, Publications of the Astronomical
- ⁷⁹¹ Society of the Pacific, 99, 67, doi: 10.1086/131958
- ⁷⁹² Sneden, C., Kraft, R. P., Prosser, C. F., & Langer, G. 1992,
 ⁷⁹³ The Astronomical Journal, 104, 2121
- ⁷⁹⁴ Suntzeff, N. B., & Kraft, R. P. 1996, AJ, 111, 1913,
 ⁷⁹⁵ doi: 10.1086/117930
- Valle, G., Dell'Omodarme, M., & Tognelli, E. 2022, A&A,
 658, A141, doi: 10.1051/0004-6361/202142454
- van den Bergh, S. 2010, The Astronomical Journal, 140,
 1043, doi: 10.1088/0004-6256/140/4/1043
- Ventura, P., & D'Antona, F. 2009, A&A, 499, 835,
 doi: 10.1051/0004-6361/200811139
- 802 Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R.
- ⁸⁰³ 2001, ApJL, 550, L65, doi: 10.1086/319496